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Financial Weather Derivatives for Corn Production in 
Northeastern China: Modelling the underlying Weather 

Index  

 

Abstract 

The focus in this study is on estimating the underlying weather index for pricing 

financial derivatives to hedge weather risks in crop production. Different index 

estimation methods for growing degree days (GDDs) are compared. In particular, daily 

average temperatures for deriving GDDs are simulated using an econometric model and a 

stochastic process that uses three methods to estimate the mean-reversion parameter. 

Finally, the historical approach based on a five-year moving average of GDDs is 

compared with the econometric and stochastic models. Results indicate that econometric 

model provides the best fit, followed by the the historical average method and then the 

stochastic process with a high mean reversion parameter. Premiums from the econometric 

model with sine function and historical average approaches are closer to those based on 

realized weather values compared with the stochastic approach. Therefore, the 

econometric model with sine function and the historical average approach provide better 

pricing estimates than other methods.  

  

Key Words: Pricing weather options; weather-based derivatives; stochastic process and 
econometric modeling; growing degree days; agricultural finance 
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1. Introduction 

Traditional crop insurance is used to protect against losses of crop yields caused 

primarily by adverse weather. A payout occurs when actual yield is below a 

predetermined reference level. However, adverse selection arises when only those who 

are most likely to claim benefits join the program, at the expense of higher premiums and 

lower uptake. Also, such a program has the problem of moral hazard, which happens 

because insured farmers take no measures to reduce their potential risks. Financial 

weather derivatives and weather-indexed insurance are alternative financial instruments 

that can be used to hedge production risks related to weather outcomes. Payoffs depend 

on the outcome of a weather index that represents the weather conditions. The problem of 

moral hazard disappears since the value of the weather index does not depend on 

individuals’ actions. Although weather derivatives and weather indexed insurance are 

essentially similar, there exist mature exchange markets for financial weather derivatives 

while weather-indexed insurance relies only on over-the-counter (OTC) contracts. 

Another important difference is that financial weather derivatives not only provide 

economic agents with a tool for hedging weather risks, but also provide an investment 

instrument that participants can purchase for diversifying their investment portfolios.  

Financial weather derivatives consist of future contracts, options and swaps. A 

call option can be claimed when the value of the weather index is above a specified 

threshold value, while a put option can be claimed when the outcome of the weather 

index is below a specified threshold. The cost of acquiring an option is its premium. In 

the agriculture, weather derivatives can be used to protect against crop losses caused by 

cold weather, extreme heat or too much or too little rainfall. For example, a farmer could 



3 
 

hedge against too little warmth, as measured by growing degree days (GDDs), or too 

little cumulative rainfall (CR), by purchasing a put option that reduces the financial risk 

that these weather variables adversely affect crop yields. If the weather outcomes below 

the threshold value, a payout would be claimed; if they are at or above the threshold 

value, the farmer would not claim the option and lose the premium paid for the option 

contract. In that case, yields are likely higher than expected, which would compensate for 

the premium. 

A number of studies have focused on methods for pricing weather derivative 

contracts, including Alaton et al. (2002), Brody et al. (2002), Campbell and Diebold 

(2005), and Jewson et al. (2005). In these studies, parametric or non-parametric methods 

were used to specify a probability distribution of the weather index, employing historical 

average method or stochastic processes to model weather outcomes. Most studies of 

weather derivatives focused on market-based, market-traded heating degree day (HDD) 

or cooling degree day (CDD) indexes in the energy sector (Huang et al. 2008�Goncu 

2011; Schiller et al. 2012). In agriculture, where financial weather derivatives have not 

been adopted on the same scale as in the energy sector, studies have looked at rainfall or 

heat index-based weather derivatives, using historical data to construct such indexes 

(Turvey 2001; Stoppa & Hess 2003; Vedenov & Barnett 2004; Musshoff et al. 2011; Sun 

& Lou 2013). 

The main objective of the current study is to examine index estimation methods 

for the pricing of weather derivatives, and compare methods on the basis of historic 

weather conditions and weather predictions. The methods used to price weather 

derivatives based on GDDs are a weather index distribution method using historic 
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averages (burn analysis), an estimated non-stochastic sine function, and a stochastic 

process with three approaches for estimating its mean-reverting parameter.  

The application is to a major corn growing region in northeastern China, namely 

Heilongjiang Province. Crop yields in northern China are highly dependent on growing 

season weather conditions, especially heat conditions during the growing season (Sun & 

van Kooten 2014; Chen et al. 2011). Therefore, farmers could use a GDD-based financial 

weather product to mitigate weather risk. China is the second largest maize producing 

country in the world after the United States (FAO 2010), with corn production in 

Northeastern China (Heilongjiang, Jilin and Liaoning provinces) accounting for more 

than 30% of the country’s total corn production in 2010 (China Statistical Yearbook 

2011). Weather index insurance was introduced into China in 2008 (Liu et al. 2010), but 

it was only adopted in some pilot areas.  

2. Data Analysis 

Heilongjiang Province is located in the most Northeastern part of China, covering 

an area of 47.3 million hectares (M ha), and lying 121º11´-135º43´ E and 43º25´-53º33´ 

N, and 50-200 meters above sea level (asl).1 It is part of China’s main spring corn 

production area. The daily average temperature data over the period 1985 to 2015 (31 

years with 8 leap years) constitute 11,322 daily observations and are from the China 

Meteorological Data Sharing System. Plots of daily average temperatures for the decade 

2006 to 2015 from a weather station in Heilongjiang Province are provided in Figure 1. 

The figure illustrates that the seasonality in the daily average temperature movements is 

                                                        
1 Information from Government of Heilongjiang Province, 2017. http://www.hlj.gov.cn/sq/dldm/ 
[accessed April 19th , 2017]  
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similar to a sine function. The mean, maximum, minimum and standard deviations of 

historical daily average temperatures are provided in Table 1. 

  

 

 

 

 

 

 

 Figure 1: Daily Average Temperatures, 2006 through 2015, Heilongjiang 
 

Table 1: Statistics of Daily Temperatures from years 1985 to 2015 

Item Obs. Mean(oC) Max.(oC) Min.(oC) S. D. (oC) 
Temp 11322 -0.1650 31.30 -39.80 17.1162 
  

Growing degree days (GDDs) are a measure of the heat to which crops are 

exposed during the growing season. Researchers found that GDD has high-order 

nonlinear effects on crop yields; yields are negatively impacted when growing season 

GDDs are too low or high (Sun & van Kooten 2014; Schlenker & Roberts 2008). GDDs 

in year t are calculated by subtracting 10oC from the average temperature for each day d 

in the growing-season, defined as: ∑
=

−=
D

d
dTGDD

1

)10,0(Max , where D (=153) refers to 

the number of days in the growing season (May to September) and Td is the average 

temperature on day d (Sun & van Kooten 2014). The mean, maximum, minimum and 

standard deviations of historical GDDs are provided in Table 2. 

Table 2: Statistics of GDDs from years 1985 to 2015 
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Item Obs. Mean(oC) Max.(oC) Min.(oC) S. D. (oC) 
Temp 31 1039.55 1212.00 871.60 92.9695 
 

3 Methods 

3.1 The Econometric Model 

The underlying GDD weather index for the pricing of weather derivatives can be 

estimated using three methods: historical averages, econometric modeling and stochastic 

modeling. Among these methods, the historical averages is used to estimate GDD directly; 

however, the econometric model and stochastic models are constructed to estimate daily 

average temperatures, which are then used to compute the GDD index. Therefore, in this 

section, the daily average temperature is modelled by a econometric model with a sine 

function and a stochastic model with different mean-reverting speeds. 

As is shown in the figure of daily average temperatures (Fig 1), temperatures 

clearly fluctuate in a manner approximating a sine function. As specified in previous 

research (Alaton et al. 2002), the following functional form for daily average temperature 

is assumed: 

 ,)sin(210 tt tbtbbT εθω ++++=  [1]

 ),sin(ˆˆˆˆ
210 θω +++= tbtbbTt  [2]

where )( minmax
2
1

ttt TTT += is the mean of the daily maximum and minimum temperatures 

at day t (= 1, 2, …, 365), with one day omitted for leap years. tT̂  is the estimated 

deterministernistic sine component of temperature. Thus, while seasonal daily average 
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temperatures ( tT̂ ) follow a sine curve, the realized average temperature (Tt) on a given 

day t fluctuates randomly about that seasonal average. Further, since the oscillation 

period is one year, ω  can be calculated by 365/2π . As the yearly minimum and 

maximum temperatures do not usually occur at the troughs and peaks of a curve of a sine 

function, a phase angle θ is introduced in the sine function model. In addition, because 

the global temperature may get warmer as a result of climate change, there might be a 

positive upward trend in the data.  bi and θ are parameters to be estimated and t is a trend 

variable causing tT̂  to rise over time. For simiplicity of estimation, we can then rewrite 

equation [2] by trigonometric function as: 

 )cossinsin(cosˆ
210 ttbtbbTt ⋅×+⋅×++= ωθωθ  [3]

Therefore, the econometric model can be specified as: 

  tatatbbTt ⋅+⋅++= ωω cossinˆ
3210  [4]

where 0b , 1b , )cos( 22 θba = and )sin( 23 θba =  are parameters to be estimated. 

3.2 Stochastic Model and Parameter Estimation 

Based on estimated seasonal daily average temperatures, the daily average 

temperature could also be modeled by a stochastic process (Alaton et al., 2002). As 

temperatures cannot rise or fall indefinitely, a stochastic process model should not allow 

temperature to deviate much from its seasonal average in the long run. In other words, the 

stochastic process describing the temperature should have a mean-reverting property. 

Temperature can be modelled by the following mean-reverting process, which is an 

example of an Ito Process (Dixit & Pindyk 1994; Alaton et al. 2002): 
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 ttttt dwdtTTdT σα +−= )ˆ(  [5]

where )ˆ( tt TT −α is a drift term and ttdwσ  is the dispersion of the Weiner process wt 

(Brownian motion), with ),0(~ dtNdwt  and tσ  is the volatility of the daily average 

temperature. In this case, Tt is the actual daily average temperature, tT̂ is the estimated 

daily average temperature for day t, and α is the speed of reversion to the estimated 

temperature. Thus, the stochastic difference equation [5] describes an Ornstein-

Uhlenbeck process. 

Assuming the start day is s and the final day is t, the solution to equation [5] is: 

 ∫ −−−− +−+=
t

s

tst
sstt dweeTTTT ττ

ταα σ)()()ˆ(ˆ  [6]

where τ ϵ [s, t] and other terms are defined as previously. In equation [6], tT̂  is the daily 

average temperature at time t as estimated by the econometric model. tT and sT  are the 

estimated daily average temperatures for day t and s as derived by the stochastic process. 

τσ  is the temperature variation for day t, which is assumed to be identical within a month, 

while the temperature variation tσ̂  can be represented by the standard deviations of each 

month. τdw  represents the Weiner process or Brownian motion; α is the mean-reversion 

speed, which will be estimated using three different methods. 

 As ∆t becomes infinitesimally small, the increment of a continuous Weiner 

process dw at time t can be represented as (Dixit & Pindyk 1994; Alaton et al. 2002): 

 2
1)(dtdw tγ=  [7]
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where )1,0(~ Ntγ  is a random variable that is serially uncorrelated.  

The speed at which the process reverts back to the seasonal average is an 

important parameter(α). Three methods are used to estimate the parameter: (1) a 

martingale estimation function, (2) a first-order autoregressive process AR(1), and (3) a 

discrete-time data equation.  

First, the martingale estimation function can also be used to estimate α. Based on 

Bibby and Sørensen (1995), Alaton et al. (2002) derive the following estimate of the 

mean-reversion parameter:  

 

( )( )

( )( )
∑

∑

= −

−−−−

= −

−−

−−

−−

−=
N

t t

tttt

N

t t

tttt

TTTT

TTTT

1
2
1

1111

1
2
1

11

ˆˆ

ˆˆ

lnˆ

σ

σ
α  [8]

where tT̂  is the estimated daily average temperature from the previous sine-function [4], 

Tt is again the realized average temperature, and σt is the mean variation of the realized 

daily average temperatures for day t. 

Consider the AR(1) process for temperature: 

 tqtnqtnptmptmt MAcMAcARcARctctctccT δωω ++++⋅+⋅++= −−−− ......cossin 11113210[9]
 

where ci is parameters to be estimated, and δt is a error term. The estimated parameter 

cm1, which measures the speed that today’s temperature reverts back to yesterday’s 

temperature, is identically the mean-reverting parameter α, so 1ˆ mc=α . 

The parameters of the mean-reverting process could also be estimated using the 
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discrete-time data equation (Dixit & Pindyk 1994): 

 tttt TddTT ζ++=− −− 1101  [10]

where d0 and d1 are parameters to be estimated, and ζt is an error term. Then, by 

estimating the parameters in [11], we obtain a third estimate of the mean-reversion 

parameter as )ˆ1ln(ˆ 1d−−=α . 

3.3 Pricing Payoffs and Premiums of Put and Call Options 

The premium of a contract is priced based on the expected payoff plus some 

precentage of payoff as profit. From the standpoint of the buyers, the payoff functions for 

put and call contracts are given by (Jewson et al. 2005): 

 
⎩
⎨
⎧

>

≤−
=

1

11

,0
),(

)(
Kx

KxxKD
xp put

 [11]

 
⎩
⎨
⎧

≥−

<
=

22

2

),(
,0

)(
KxKxD

Kx
xp call

 [12]

where p(x) is the payoff for an option; D is the tick size (dollar value per unit of the 

weather index); K1 and K2 are the strike (trigger) values for the put and call options, 

respectively; and x is the weather index. For put and call contracts, these are the payoffs 

against low and high values of the weather index, respectively. 

Assuming that the weather index employed for a financial instrument follows a 

normal distribution, the expected payoff is (Jewson et al. 2005): 

 ∫=
b

ap dxxpxfE )()( , [13]

where f(x) is the probability density function (PDF) of a weather index, which is GDD in 
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the current study, and p(x) is the payoff associated with the financial instrument for 

potential outcome x of the weather index. Denote the payoffs for put and call options as 

p(x)put and p(x)call, respectively. Upon transforming the weather index into a standard 

normal distribution, let 
σ
µ−

=
x

z , the expected payoff function becomes: 

 ∫∫ ==
b

a

b

ap dxxpzdzzpzE )()(1)()(
'

'
φ

σ
φ , [14]

where σ is the standard deviation of the weather index and )(zφ is the PDF of a standard 

normal distribution.  

Inserting payoff functions [11] and [12] for the put and call contracts into the 

expected payoff function [14] gives the following respective closed-form functions for 

uncapped put and call options:  

  )()(1
1

11
1,

1
µ

σ
µ

σ
µ

σφ
σ
µ

φ
σ

−⎟
⎠

⎞
⎜
⎝

⎛ −
Φ+⎟

⎠

⎞
⎜
⎝

⎛ −
=⎟

⎠

⎞
⎜
⎝

⎛ −
−= ∫ ∞−

K
K

D
K

Ddx
x

xKDE
K

PUTp ,  [15]

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −
Φ−−+⎟

⎠

⎞
⎜
⎝

⎛ −
=⎟

⎠

⎞
⎜
⎝

⎛ −
−= ∫

∞

σ
µ

µ
σ
µ

σφ
σ
µ

φ
σ

2
2

2
2, 1)()(1

2

K
KD

K
Ddx

x
KxDE

KCALLp , [16]

where µ is the mean value of the weather index; K1 and K2 are the lower and upper strike 

values, respectively; φ  and Φ refer to the standard normal PDF and the cumulative 

density function (CDF), respectively; and x is the weather index. 

Let k1 = 
σ
µ−1K = –m and k2 = 

σ
µ−2K = m, where m = {0.2, 0.4, …, 2.0}. Then 

equations [15] and [16] can be written as:  

 Ep,PUT = D σ [ )( m−φ – m Φ(–m)] and  [17]
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 Ep,CALL = D σ [ )(mφ – m + m Φ(m)]. [18]

        The price of an option (or its premium) is calculated from the expected payoff as 

(Alaton et al. 2002): 

 p
STr EeRc )()1( −−+= , [19]

where c is the premium that the hedgers (buyers) need to pay for a contract, r is a risk-

free periodic market interest rate, S is the date that the contract is issued (purchased), and 

T is the date the contract is claimed or the expiration date. Ep is the expected payoffs 

based on the estimated value of GDDs. The seller of the option would expect a reward for 

taking on risk and, hence, the premium would be higher than the expected payoff by an 

amount known as the risk loading, which is often between 20% and 30% of the payoffs 

(Jewson et al. 2005). In the current application, we set the risk loading at 20%(R) of the 

expected payoff of the contract.  

4. Results 

4.1 Estimation Results of the Econometric Model 

 The econometric model is estimated by the method of GLS ARMA, with the 

regression results provided in Table 3. The estimated equation for daily average 

temperatures (ignoring the ARMA errors) can be written as :  

 tT̂ = – 4.60429 × sin w·t – 22.87415 × cos w·t. [20]

This model explains 97.3% of the variation in daily average temperatures. The LM test 

results for serial correlation are found in Table 4. The p-values are geater than the 5% 

significance level, indicating there is no serial correlation in the error term. The Root 
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Mean Squared Error (MSE) and Mean Absolute Error (MAE) between the actual daily 

average temperatures and the forecasts for daily average temperature with ARMA terms 

and without ARMA terms are provided in Table 5. It shows the difference for the MSE or 

MAE is very small, less than 0.005, so the forecast without ARMA terms can be a good 

substitution for that with ARMA terms. Figure 2 also shows that the predicted daily 

average temperatures fit well with the actual values.  

Table 3: Estimation Results 
Variable Coefficient Std. Error t-Statistic Prob.  
SINWT -4.604294 0.256626 -17.9417 0.0000 

COSWT -22.87415 0.255700 -89.4569 0.0000 
AR(1) 0.609351 0.088840 6.8590 0.0000 
AR(2) 0.785809 0.135882 5.7830 0.0000 
AR(3) -0.430726 0.053991 -7.9778 0.0000 
MA(1) 0.264928 0.088397 2.9970 0.0027 
MA(2) -0.769970 0.063583 -12.1097 0.0000 
MA(3) -0.232248 0.020557 -11.2976 0.0000 

R2 0.9731   
Adjusted R2 0.9730   

S.E. of 
regression 2.8109   

Notes: Dependent variable: daily average temperature; Method: ARMA Generalized 
Least Squares (Gauss-Newton); coefficient for the intercept is not significant. 

Table 4: LM Test for Serial Correlation 
Breusch-Godfrey Serial Correlation LM Test  

F-statistic 0.341281  Prob. F(1,11306) 0.5591 
Obs×R2 0.341542  Prob. Chi-Square(1) 0.5589 
Notes: Null Hypothesis: No serial correlation. 

Table 5: Root Mean Squared Error and Mean Absolute Error of the Forecast 
 Forecast with 

ARMA 
Forecast without 

ARMA  
 

Differences 
Root Mean Squared Error 4.580475 4.583003 -0.00253 

Mean Absolute Error 3.593020 3.594925  -0.00190 
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Figure 2: Residuals, Actual and Fitted daily average temperatures of the estimation  

 
4.2 Estimation Results for Parameters in the Stotastic Process 

From the 31-year historic daily average temperature data, the estimated values of 

σ for each month are given in Table 6. November and March have the largest standard 

deviations of 6.876 and 6.173, respectively, while July and August have the smallest, 

namely, 2.854 and 2.994, respectively. From the martingale estimation function [9], we 

find 1α̂ =0.2547. From the the estimation results in Tables 3 and 7, the two alternative 

estimates of the mean reversion speed are 
2α̂ = 0.609351, which is estimated from the 

AR(1) process, and 
3α̂ =0.0161.  
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Table 6: Estimated σ and σ 2 for each of the 12 Months 
Month σ σ 2 

Jan. 5.6875 32.3477 
Feb. 5.3814 28.9595 
Mar. 6.1725 38.0998 
Apr. 4.7146 22.2275 

May. 4.4178 19.5170 
Jun. 3.5336 12.4863 
Jul. 2.8542 8.1465 

Aug. 2.9938 8.9628 
Sep. 4.2008 17.6467 
Oct. 5.0146 25.1462 

Nov. 6.8755 47.2725 
Dec. 5.5608 30.9225 

 

Table 7: Estimation Results for the discrete mean reversion speed (implied by 

equation 11) 

Variable Coefficient Std. Error t-Statistic Prob.  
TMEAN(-1) -0.015977 0.001115 -14.33354 0.0000 
R2 0.008024   
Adjusted R2 0.008024   
S.E. of regression 3.040854   
Notes: -ln(1-0.015977)= 0.01610601. 

Fluctuations of historic and estimated (predicted) daily average temperatures are 

provided in Figure 2; using the sine function, these estimates fit the trend of the actual 

daily average temperatures quite closely. By adding a Wiener process to the sine function, 

the daily average temperatures are simulated with different mean reversion speeds – 

parameters from the Martingale estimation function, the AR (1) process and discrete-time 

data equation. These simulated daily average temperatures are then compared with the 

predicted values by the sine function without the stochastic process, with Root Mean 

Squared Errors plotted in Table 8. Finally, the weather index (GDD) is generated from 
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the estimated daily average temperatures.  

 To compare the estimated GDDs by different methods and with different mean 

reversion parameters, the variations between the estimated and actual GDDs over the 

period 1990 through 2015 are plotted in Figure 4, with values presented in Table 9. The 

mean squared errors between estimated and actual GDDs, measured from the smallest to 

the largest, are those based on the econometric sine-function model, historical average 

method, and the stochastic process with a high mean reversion speed derived from the 

AR(1) process. The remaining estimated variations, with mean reversion speed from the 

martingale process and from the discrete time function, are much larger and, thus, are 

excluded from further analysis. In other words, the sine function without a stochastic 

process fit the actual GDDs best, followed by the historical average values of the GDDs, 

and then estimated GDDs from the stochastic process with a high mean reversion speed 

(α1). Therefore, when pricing weather derivatives, the first choice is the the sine function 

without a stochastic process, then the weather index based on the historic means, and 

finally the GDD index derived using the mean reversion method with a high mean 

reversion parameter estimated from the AR(1) process. 
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Figure 4: Estimated GDDs and actual GDDs, 1990-2015 ( Actual: the actual GDDs; 

Average: the estimated GDDs from thehistorical average; Sine Function:the estimated 
GDDs from the econometric model; α1: the estimated GDDs from the stochastic process 
with mean reversion speed α1; α2: the estimated GDDs from the stochastic process with 

mean reversion speed α2) 

 
                          Table 8: Variations between estimated and realized  
                          daily average temperatures, 1990-2015a 
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 Root Mean Squared Error 
Forecast with ARMA 4.580475 
Forecast Ignored ARMA 4.583003 
α1=0.609351 4.805958 
α2=0.2547 6.732413 
α3=0.016106 19.552905 
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Table 9: Variations between estimated and realized GDDs, 1990-2015a 

Variation Average   
Standard 
Deviation 

Root Mean Squared 
Error 

Method 1: 5-year average  1043.77 59.6180 83.8892 
Method 2: Sine function  1054.89 

 
75.7210 13.6631 

Method 3:Stochastic 
process:  

  
Mean reversion α1  1068.62 23.5290 133.8873 
Mean reversion α2 1240.37 158.5006 263.7036 
Mean reversion α3 1141.37 1274.0740 1261.6840 

a The average and standard deviation of the real GDDs are 1055.74 oC and 86.8813 oC; 
the actual standard deviation is used to calculate the prenimums for the contracts.	
 

To price the financial weather derivatives, assume a tick size of D=$1, a risk free 

interest rate r=0.08, ∆t=0.75 year (time between the issue date and the expiry date), and 

risk loading of b=20%. Pricing results for the study region in northeastern China for 2015 

are provided in Table 10. The actual GDDs for 2015 are 1053.70 oC; the actual standard 

diviation for years from 1990 to 2015 (=86.88 oC) is used to calculate the actual 

premiums for the contracts. The strike values are calculated by µ–0.2σ and µ+0.2σ for 

levels that are 0.2 standard deviations below and above of average realized GDDs, or m = 

–0.2 and m = 0.2; when m = –0.2 and 0.2, its probability densities and cumulative 

probabilities are given by: φ (–0.2)=0.3910, Φ(–0.2)=0.4207, φ (0.2)=0.3910 and 

Φ(0.2)=0.5792. The premiums are calculated from payoff equations [17] and [18] using 

[19], where R is a 20% risk loading factor. The premiums are determined for put and call 

contracts for year 2015 in which the strike level is above or below 0.2 standard deviations 

from the estimated weather index for the Average, Sine Function and α1 approaches to 

estimating GDDs. In the following table, for the respective three approaches, the strike 
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levels for put options are 1031.85 oC, 1039.75 oC and 1063.91 oC; the strike values for 

call options are 1055.70 oC, 1070.03 oC and 1073.32 oC. The prenimus of the put options 

of the average, sine function and  α1 stochastic approaches are $20.26, 25.74 and $8.00, 

respectively. The premium of the put option for 2015 based on the actual standard 

deviation over the period 1990 to 2015 is $29.53. It is shown that premiums from the 

econometric model with the sine function and historical average approaches are closer to 

those based on the realized weather values than the stochastic approach. Therefore, the 

econometric model with sine function and the historical average approaches provide 

better pricing estimates than other methods.  

Table 10: Specification of GDD options for year 2015 
Items Put Option Call Option 
Weather Index GDD GDD 

Strike Level  
(K1 or K2) 

Average: 
1031.8504 

(1043.774oC–0.2�59.6179oC) 

Average: 
1055.6976 

(1043.774oC+0.2�59.6179oC) 

Sine Function: 
1039.7458 

(1054.89oC–0.2�75.7210oC) 

Sine Function: 
1070.0342 

(1054.89oC+0.2�75.7210oC) 

α1: 
1063.9122 

(1068.618oC –0.2�23.5289oC) 

α1: 
1073.3238 

(1068.618oC +0.2�23.5289oC) 

Tick Size (D) $ 1 $ 1 

Premiuma 
$ 20.2654 

 
$20.1452 

$ 25.7392 
 

$25.5865 
$7.9980 $7.9506 

Payoff Max (K1–GDD, 0) Max (GDD–K2, 0) 
Issue date December 31, 2014 December 31, 2014 
Maturity date September 31, 2015 September 31, 2015 
a The premiums based on the actual GDDs (1053.70 oC) and its standard deviation (86.88 

oC) for year 2015 is $29.5323 and $29.3571, with strike levels at 1036.32oC and 
1071.08oC. 
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5. Conclusions 

The agricultural sector is particularly vulnerable to weather risks, but financial 

weather derivatives can be developed to reduce farmers’ exposure to such risk. This may 

particularly be the case for developing countries where a large portion of the population 

is still dependent on agriculture and government insurance and other support is lagging. 

Indeed, studies have shown that farmers in central and northwestern China, for example, 

are interested in weather indexed insurance (Turvey et al. 2009; Liu et al. 2010). Given 

that farmers are interested in financial weather products in China, the focus of this study 

is on the setting of premiums for puts and calls on growing-degree-day weather options.  

Several methods were considered for forecasting future temperatures upon which 

to generate a GDD weather index. These in turn would determine the premiums that 

markets would charge, excluding transaction costs. In partcular, an econometric sine-

function model and a stochastic model were compared with the historical average method. 

It is found that the econometric model without a stochastic process led to the best 

approximation of realized temperatures and that premiums for options based on a GDD 

weather index derived from the estimated econometric model were closer to the actual 

premiums than those derived using other methods. Further, if temperature was assumed 

to follow a stochastic process, the mean reversion parameter obtained from the AR(1) 

method gave a better result compared with other methods for mean reversion speed 

estimation.  

Projecting future temperatures and growing degree days is fraught with 

uncertainty, which is why farmers wish to hedge against weather risk. However, markets 

need to provide farmers with hedges that are attractive, effective and truly representative 
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of the risks producers encounter. Further research is required to better link crop yields to 

growing degree days – to match crop losses due to weather risks to the weather index – 

and to identify a proper tick size for pricing GDD-based weather derivatives. 
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